
A corpus for the evaluation of lossless compression
algorithms

Ross Arnold and Tim Bell∗

Department of Computer Science, University of Canterbury,
Christchurch, NZ

1 Introduction

A large number of quite different lossless compression systems have been proposed
and implemented over the years. Normally some sort of evaluation is provided by
authors to establish the relative merits of their system. This paper investigates how
the reliability of these evaluations can be ensured, particularly the repeatability of
experiments, in line with scientific method.

The evaluation of compression methods can be analytical or empirical. Analytical
results are generally expressed in terms of the compression of a system relative to the
entropy of the source, which is assumed to belong to a specified class. Such results
tend to have only asymptotic significance; for example, the LZ78 method [ZL78]
converges to the entropy for very large inputs, but in practical situations files are
far too short for this convergence to have any significance. For this reason empirical
results are needed to establish the practical worth of a method.

The main factor measured in typical empirical experiments is the amount of com-
pression achieved on some set of files. Researchers also often report the speed of
compression, and the amount of primary memory required to perform the compres-
sion. The speed and memory requirements can be different for the encoding and
decoding processes, and may depend on the file being compressed. This can result in
a daunting number of factors that need to be presented.

A number of authors have used the “Calgary corpus” of texts to provide empir-
ical results for lossless compression algorithms. This corpus was collected in 1987,
although it was not published until 1990 [BCW90]. Recent advances with compres-
sion algorithms have been achieving relatively small improvements in compression,
measured using the Calgary corpus. There is a concern that algorithms are being
fine-tuned to this corpus, and that small improvements measured in this way may
not apply to other files. Furthermore, the corpus is almost ten years old, and over

∗tim@cosc.canterbury.ac.nz

this period there have been changes in the kinds of files that are compressed, partic-
ularly with the development of the Internet, and the rapid growth of high-capacity
secondary storage for personal computers.

In this paper we explore the issues raised above, and develop a principled technique
for collecting a corpus of test data for compression methods. A corpus, called the
Canterbury corpus, is developed using this technique, and we report the performance
of a collection of compression methods using the new corpus.

2 Evaluating compression performance

It would be tempting to think that the perfect evaluation of a compression method
would be to evaluate it on every possible input file and record the average compression
over all of those files. However, not only is this computationally infeasible, but the
compression results would be disappointing because the average compressed file size
must be greater than or equal to the average original size (since in this situation we
can only assume that all possible files are equally likely, and thus are best coded
using a flat representation). Compression can be thought of as a mapping of all
possible input files of a given length to a set of files of different lengths, with shorter
representations being given to files that are more likely to occur. As soon as one file is
allocated a shorter representation, another file must be given a longer representation,
otherwise there will be insufficient distinct codes to allow the files to be decoded
unambiguously1.

Consequently, we can only be concerned about evaluating a method on files that
are likely to occur. In practice, even this relatively small subset would be impossible
to collect, let alone evaluate, and so we must be content to use a small random
sample of “likely” files. At this point it is very difficult to argue that one file is more
relevant than another, since it is not usually possible to know what the files are that
a compression system is likely to be presented with. If we did know then we would
design a mapping specifically for them. For example, it is highly unlikely that any
system would be presented with more than 2100 files to compress in its lifetime, and
so all possible files could be mapped on to a 100-bit representation! The problem
of predicting what files are “likely” is precisely the problem facing any developer of
compression systems, and it is ironic that it also makes the evaluation challenging.

These arguments justify the common approach of choosing a few files that happen
to be available as the basis of an empirical evaluation. However, some care needs to be
taken over how these files are chosen in order to make the results valid and repeatable.

Validity is questionable if the files are of a specialised type that do not indicate how
the compression system would perform in more general circumstances. An extreme
case of this is an evaluation that uses files that are particularly well suited to the

1Curiously, there has recently been heated debate of what amounts to the same issue in the
machine learning community. Wolpert’s “no free lunch” theorem [Wol92, Wol94] and Schaffer’s
“Conservation law of generalization” [Sch94] both stated that for any machine learning algorithm,
positive performance in some learning situations must be balanced by negative performance in others.
This realization has caused a great deal of controversy in machine learning.

system. An example of this situation would be a compression system with a built-in
dictionary that was constructed to suit the test file2. Another example is using a
test file that contains trivial sequences, such as a test file that consists of “enough
copies of the 26-letter alphabet to fill out 100,000 characters” [Abr89] (in this case
the results are still valid because other more typical files are also used, but there is a
risk that the method described could be reported as achieving compression of “up to
99.42%”.)

Determining the type of files that should be used for an evaluation is not simple,
and will depend on the application of the system. For example, a compression system
to be used in a modem might be evaluated on the kinds of files transferred from a
personal computer, while one to be used as part of a transparent disk compression
system would be evaluated on blocks of data from a “typical” disk.

As well as the set of test files being valid, it is important that experiments are
repeatable. A simple way to achieve this with compression systems is to make both
the compression program and test files available to others. However, often researchers
are reluctant to distribute their system, and the test files may not be available for
public distribution because of copyright problems.

A simple solution to most of the above problems is to develop a corpus of files
that is publicly available, and also to publish the results of compression systems on
the corpus. The main intent of the repeatability requirement can be achieved if the
performance of a system is evaluated independently by a trusted site.

Such a corpus could still be taken advantage of to make a particular compression
system look good. One very simple strategy to make an algorithm appear to work
well is to detect whether one of the corpus files is being compressed, and to encode it
specially. A less extreme example of this is to fine tune the parameters of a system to
suit the files in the corpus. This sort of system would easily be discredited by testing
it on other files; one could even envisage having a set of secret test files at the trusted
site for this purpose. Furthermore, a full replication of the experiment (where the
algorithm is re-implemented from its description) should always be possible.

Another deliberately misleading tactic used to “sell” a compression system was
used by the OWS and WIC programs, which hid the original data in unused disk
blocks or in another part of the file system. Such systems appear to be very impres-
sive until the user attempts to decompress a copy of the compressed file on another
computer. Other related strategies would be to store the file somewhere else using
the Internet, or to look for another copy of the file elsewhere on the file system.
Fortunately this kind of deception can be detected fairly easily by the compression
community.

2Believe it or not, one of the authors has been presented with a paper to referee that described
a dictionary-based compression scheme that was evaluated by deleting from test files all words that
were not in the compression dictionary.

3 Survey of test files used in the past

In order to identify trends in the selection of test files, we have tabulated the files
used in papers that were presented at the Data Compression Conference in the three
years from 1994 to 1996, in Table 1. The table covers both lossy and lossless methods.
Of the authors who performed empirical tests, 17.2% did not identify their test data,
and a further 30.6% used data that was not used in any other paper. This leaves
only about a half of the papers that report results that can conveniently be compared
with others.

1994 1995 1996 Total %
papers posters papers posters papers posters

No test data used 12 51 10 40 7 20 140
Data not identified:
— lossy 4 6 3 5 1 3 22 11.8
— lossless 2 1 2 5 10 5.4
Data not used by others 1 9 11 6 11 4 57 30.6
Lena 5 4 9 5 8 4 35 18.8
Calgary Corpus 3 1 2 2 3 3 14 7.5
USC 2 1 5 4 2 2 16 8.6
Simulated Source 3 1 1 2 4 11 5.9
CCITT 2 2 1 3 8 4.3
Miss America Video 1 1 1 3 1.6
CT medical 1 1 2 4 2.2
Football Video 1 1 2 1.1
JPEG Standard 2 2 1.1
JBIG Standard 1 1 2 1.1
Total 49 76 44 68 48 41 326 100.0

Table 1: Test data used in Data Compression Conference papers and posters.

The only test data that was used in more than one paper reporting lossless meth-
ods was the Calgary Corpus, although almost as often researchers used data that was
not even identified. The lossy compression research community faces similar prob-
lems, although the “Lena” image is clearly popular. Despite the widespread use of
this particular image, using it to compare results is still not straight-forward because
the image exists in several versions, in different resolutions and in colour and gray-
scale. It also has different names—Lena, Lenna, and WomanHat—and it is not in the
public domain because it was taken from a magazine without permission [Opt92].

4 Criteria for choosing a corpus

We have established above that it is very difficult to identify which set of files will be
the most suitable for a corpus. However, there are some criteria that are desirable.

• A corpus is should be representative of the files that are likely to be used by a
compression system in the future. This means that it will contain a variety of
different types of files.

• The corpus should be widely available. Making it available on Internet is the
obvious way to achieve this.

• The corpus should only contain public domain material. This rules out a large
number of “real” files that we would like to put in the corpus. For example, it
would be desirable to have samples from a PC disk to evaluate transparent disk
compression methods, but inevitably such a sample would contain proprietary
code.

• The corpus should not be larger than necessary. If it is too large then it will be
too slow or expensive to distribute.

• The corpus should be perceived to be valid and useful. This will encourage wide
adoption. To create this perception the corpus should include widely used file
types, and the procedure used to choose the corpus should be published.

• The corpus should be actually valid and useful. The performance of compression
algorithms on the corpus files should reflect “typical” performance on other files.
The remainder of the work reported in this paper is intended to establish this.

5 Development of a new corpus

The following procedure was used to collect a new corpus of test files, with the aim
of selecting the files that give the most accurate indication of the overall performance
of compression algorithms.

First, a large number of candidate files (about 800) were identified as being rele-
vant for inclusion in a corpus. The files selected were all public domain, and we tried
to obtain as large a variety of types and sizes as possible. These were divided into
groups according to their type, such as English text, C source code, UNIX object
code, and HTML. Although only a small subset of possible file types was covered, we
shall see later that this does not necessarily compromise the validity of results from
the corpus.

Figure 1 shows a partial plot of the amount of compression on two of the file
groups, the executables and the C source code groups, for the Unix utility compress.
This is an example of how different file types consistently exhibit different compression
ratios — the file types form distinct linear groups with only the occasional outlier.
This behaviour is typical.

For each group we want to select a small number of representative files, with regard
to compression. To do this, we compressed each file in the group with a number of
compression methods. For each compression algorithm used, a scatter plot of file size
before and after compression was obtained. Because files in the group had similar

0

5000

10000

15000

20000

0 5000 10000 15000 20000 25000 30000

co
m

pr
es

se
d

si
ze

 (
by

te
s)

original size (bytes)

’c_source’
’executables’

Figure 1: Results from applying the compress program to files of two different types.
Each data point represents a file.

File Set Description N average correlation best file average normalised
deviation from line

guten prose all English text 68 0.990 alice29.txt 0.00164
CCITT Test Set Fax images 8 n/a ptt5 0.00122
c source C source code 164 0.983 fields.c 0.00017
excelfiles Spreadsheet Files 29 0.995 kennedy.xls 0.00039
gnu exe SPARC Executables 188 0.996 sum 0.00106
guten technical Technical documents 15 0.992 lcet10.txt 0.00070
guten poetry English Poetry 5 0.998 plrabn12.txt 0.00001
html1 HTML 19 0.984 cp.html 0.00045
lisp lisp source code 76 0.948 grammar.lsp 0.00025
manpages GNU Manual pages 150 0.998 xargs.1 0.00022
shakesp Plays 27 0.995 asyoulik.txt 0.00001

Table 2: Correlation in groups of files of the same type

characteristics, the relationship was approximately linear. A straight line was fitted
to the points using ordinary regression techniques, so the slope of this line gives the
average compression of that file set for that algorithm.

For each group of files we identified a single file that was consistently close to
the regression line, where distance from the line was measured as the square of the
normalised distance above or below the line.

The results of this experiment are summarised in Table 2. N is the number of
files in each group, and the “best file” is the one selected to be in the new Canterbury
corpus. Note the high correlation between files in the same group (all of the files in
the CCITT test suite were the same size, so no correlation could be obtained).

Unfortunately it is very difficult to find files that are consistently close to the
regression line. Despite the relatively high correlation, files can still deviate consid-
erably from the average. It would be desirable to find a representative file whose
compression performance would be equivalent to looking up the average compression
for the whole group in a table, so that the compression performance on that file could
be used as an absolute measure of the compression performance of a method on a

File group All files Corpus file
(average±s.d.)

lisp source code 2.58±0.74 1.81
C source code 2.38±0.83 1.93
GNU Manual pages 3.37±0.66 2.97
HTML 3.40±0.86 2.32
Average 2.93 2.26

Table 3: Compression performance on all test files compared with corpus files, for
PPM*

large number of files. However, this does not appear to be possible. For example,
Table 3 shows the compression performance of a new method (PPM* [CTW95]) on
some of the groups of files. The compression averaged over all files in a group has a
relatively high standard deviation, and although the compression on the particular
file selected for the corpus is relatively close to the mean, it is too far away to be
considered a reliable estimate.

We have experimented with increasing the representative files to five of each type,
but this is still highly subject to variation. The average over all file types reduces this
effect somewhat, but (as shown in Table 3), the value 2.26 could hardly be considered a
good estimate for the correct value of 2.93. Thus we conclude that absolute estimates
are unreliable.

Fortunately, it turns out the relative compression performance is much more re-
liable. For example, comparing the PPM* method to gzip for the four file sets in
Table 3 indicates that PPM* files are, on average, 88.3% of the size of gzip ones for
all test files, while the corpus subset averages 88.1%. Comparing PPM* with PPM
gives figures of 97.5% and 97.7% respectively. The standard deviations involved are
considerably smaller than the ones for the absolute measurements, and the relative
figures on the corpus are very similar to those for the entire set of files available.
This indicates that relative measurements on the corpus are reasonably reliable, and
a relative improvement of even a few percent is significant.

6 Results

The results of compressing the files in the new Canterbury Corpus are shown in Ta-
ble 4. Compression is measured in bits per character as this is a convenient unit to
work with, and relates closely to entropy measures. It also avoids dependency on the
representation of the input file (for example, it is the same whether the input uses
an 8- or 7-bit character code.) The average is taken unweighted over all file types
(a weighted average, that is, one calculated from the total compressed size compared
with the total uncompressed size of the corpus, could give undue weight to a par-
ticular class of files). The methods evaluated are pack (Huffman coding), compress
(a public domain utility derived from LZW [Wel84]), DMC (Dynamic Markov Com-

File Set File pack compress DMC gzip bred PPMC
English text alice29.txt 4.62 3.27 2.38 2.86 2.55 2.30
Fax images ptt5 1.66 0.97 0.82 0.88 0.82 0.98
C source code fields.c 5.12 3.56 2.40 2.25 2.17 2.14
Spreadsheet Files kennedy.xls 3.60 2.41 1.43 1.61 1.21 1.01
SPARC Executables sum 5.42 4.21 3.03 2.70 2.77 2.71
Technical documents lcet10.txt 4.70 3.06 2.31 2.72 2.47 2.18
English Poetry plrabn12.txt 4.58 3.38 2.66 3.24 2.89 2.46
HTML cp.html 5.30 3.68 2.69 2.60 2.50 2.36
lisp source code grammar.lsp 4.87 3.90 2.84 2.65 2.69 2.41
GNU Manual pages xargs.1 5.10 4.43 3.51 3.31 3.26 2.98
Plays asyoulik.txt 4.85 3.51 2.64 3.13 2.84 2.52
Average 4.53 3.31 2.43 2.54 2.38 2.19

Table 4: Compression (in bits per character) using the Canterbury Corpus on six
compression methods.

pa
ck

co
m

pr
es

s

D
M

C

gz
ip

br
ed

P
P

M
C

0

2

4

6

A
ve

ra
ge

 c
om

pr
es

si
on

 (
bp

c)

 Calgary corpus

 Canterbury corpus

Figure 2: Comparison of compression performance on the Canterbury and Calgary
corpora

pression [CH87]), gzip (a public domain utility derived from LZ77 [ZL77]), bred (a
sort based compression system [BW94]), and PPMC (Prediction by Partial Match-
ing [Mof90]).

Figure 2 compares the average values obtained for the different methods on the
Canterbury and Calgary corpora. The rankings are identical, and the average com-
pression amounts are very similar. This indicates that performance on the Calgary
corpus may still be a suitable measure of compression. The main advantage of the
Canterbury corpus is that it has files that are more typical of contemporary situa-
tions, and that its selection is more principled. The existence of two corpora is useful
for checking that any fine tuning of algorithms is not applicable just to one corpus;
for example, an algorithm could be have its parameters fine tuned on one corpus, and
then the other could be used to check that the parameters still give good performance.

The files in the Canterbury corpus are not particularly large, and sometimes re-
searchers are interested in the performance of compression systems on longer, homo-
geneous files. For this reason we will add some extra files to the corpus that may

File type Speed (µs/KB) Compression (bpc)
lisp source 1.4 2.66
English Text 2.0 2.48
Binary 4.4 3.59

Table 5: Results of compressing three different file sets with the PPMC algorithm.

be useful for this purpose. However, for the sake of making comparison simple, the
subset shown in Table 4 will be used to provide an overall average to give a single
figure for a quick comparison.

Measuring the speed of a method is difficult. The immediate problem is that it
depends on the speed and architecture of the machine that the program runs on.
However, it also depends on the input data. Table 5 shows how the speed can vary
using different files for the same program—the speed varies by a factor of more than
3, which is far more than the compression performance varies! However, the difference
in speed between different algorithms is also considerably greater than the difference
in compression, and so reporting the speed on just one particular file still gives a
useful indication of the algorithm’s performance.

7 Conclusion

Despite its age and somewhat arbitrary process for construction, the Calgary corpus
appears to still be a good indicator of compression performance. However, the Canter-
bury corpus offers a selection of more contemporary file types that have been chosen
using a more justifiable process. Experiments with the new corpus show that while
it still does not give a useful absolute compression figure, relative figures obtained
from the corpus are accurate to within a few percent. This means that a measured
improvement of as little as 0.1 bits per character is significant for high performance
methods.

The web page http://www.cosc.canterbury.ac.nz/~tim/corpus3 provides ac-
cess to the test files and results of compression for both the Canterbury and Calgary
corpora. The associated web pages give details about the results, including the pro-
grams and parameters used, and program availability.

References

[Abr89] D.M. Abrahamson. An adaptive dependency source model for data com-
pression. Communications of the ACM, 32(1):77–83, January 1989.

[BCW90] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice
Hall, Englewood Cliffs, NJ, 1990.

3For users in North America, the test files are available more conveniently from
ftp://dna.stanford.edu/pub/canterbury.

[BW94] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital Equipment Corporation, Palo Alto,
California, 1994.

[CH87] G.V. Cormack and R.N. Horspool. Data compression using dynamic
Markov modeling. Computer Journal, 30(6):541–550, December 1987.

[CTW95] J. G. Cleary, W. J. Teahan, , and I. H. Witten. Unbounded context lengths
for ppm. In J A Storer and J H Reif, editors, Data Compression Conference
(DCC 91), pages 52–61, Snowbird, Utah, 1995. IEEE Computer Society
Press.

[Mof90] A. Moffat. Implementing the PPM data compression scheme. IEEE Trans-
actions on Communications, 38(11):1917–1921, November 1990.

[Opt92] Editorial. Optical Engineering, 31(1), 1992.

[Sch94] C. Schaffer. A conservation law for generalization performance. In Proc.
International Conference on Machine Learning, pages 259–265, 1994.

[Wel84] T.A. Welch. A technique for high performance data compression. IEEE
Computer, 17:8–20, June 1984.

[Wol92] D. H. Wolpert. On the connection between in-sample testing and general-
ization error. Complex Systems, 6:47–94, 1992.

[Wol94] D. H. Wolpert. Off-training set error and a priori distinctions between
learning algorithms. Technical report, Santa Fe Institute, Santa Fe, NM,
1994.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, IT-23:337–343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable
rate coding. IEEE Transactions on Information Theory, IT-24:530–536,
1978.

